Profesores

Carolina Saavedra
carolina.saavedra@inf.utfsm.cl
Doctora en Informática, INRIA, Francia.
Magíster en Ciencias de la Ingeniería Informática, USM.
Ingeniera Civil Informática, USM

Áreas de especialización

Neurociencia computacional, procesamiento de señales y machine learning.
Oficina F-220 Campus Casa Central Valparaíso
+56322654658
Publicaciones
•Mailyn Calderón Díaz, Ricardo Jiménez, Carolina Saavedra, Juan P. Vásconez, Romina Torres, Miguel A. Solis, Daira Velandia and Rodrigo Salas. Evaluating the influence of physical activity on gait aging using multilevel machine learning. IEEE Access, pages 1–1, 2025. [WOS].

•Irene Marín, Francisco Torres, Rodrigo Riveros, Bárbara Oliva, Joanna Vega, Carolina Saavedra, Sebastián Rojas, Matías González, Carlos Bennett, Pablo Cox and Stéren Chabert. Evaluation of the DTI-ALPS Index as a Biomarker of the Glymphatic System at 1.5T. Open Neuroimaging J, 2025; 18: e18744400389049. http://dx.doi.org/10.2174/0118744400389049250723091323

•Rodrigo Salas, Juan Sebastián Castro, Marvin Querales, Carolina Saavedra, Claudia Prieto, and Steren Chabert. Multilabel Classification of Intracranial Hemorrhages Using a Deep Learning Framework with Image Preprocessing on Non-Contrast CT Images. 27th Iberoamerican Congress, CIARP 2024, Talca, Chile, November 26–29, 2024, Proceedings, Part II pages 175-190. [SCOPUS]

•Pablo Neirz, Hector Allende, and Carolina Saavedra. Attribute relevance score: A novel measure for identifying attribute importance. Algorithms, 17(11), 2024. [WOS]

•Romina Torres, Christopher Zurita, Diego Mellado, Orietta Nicolis, Carolina Saavedra, Marcelo Tuesta-Roa, Matias Salinas, Ayleen Bertini, Oneglio Pedemonte, Marvin Isaac Querales, and Rodrigo Salas. Predicting cardiovascular rehabilitation of patients with coronary artery disease using transfer feature learning. Diagnostics, 2023. [WOS].

•Daniel Araya, Rodrigo Salas, Alejandro Weinstein, and Carolina Saavedra. Movements acquisition based on the archimedean spiral test using leap motion controller. In The 18th International Symposium on Medical Information Processing and Analysis, SIPAIM, 2023. [SCOPUS].

•Gonzalo Tapia, Rodrigo Salas, Matías Salinas, Carolina Saavedra, Alejandro Veloz, Alexis Arriola, Steren Chabert, and Antonio Glaría. An extreme learning machine for blood pressure waveform estimation using the photoplethysmography signal. Journal of Engineering Research and Sciences,1:161–174, 2022.

•Steren Chabert, Juan Castro, Leonardo Mu˜noz, Pablo Cox, Rodrigo Riveros, Juan Vielma, Gamaliel Huerta, Marvin Querales, Carolina Saavedra, Alejandro Veloz, and Rodrigo Salas. Image quality assessment to emulate experts’ perception in lumbar MRI using machine learning. Applied Sciences-Basel 2021; MDPI. ISSN 2076-3417, 2021. [WOS].

•Mailyn Calderón-Díaz, Ricardo Ulloa-Jiménez, Carolina Saavedra, and Rodrigo Salas. Wavelet-based semblance analysis to determine muscle synergy for different handstand postures of chilean circus athletes. Computer Methods in Biomechanics and Biomedical Engineering, 2021. [WOS].

•Juan Sebastian Castro, Steren Chabert, Carolina Saavedra, and Rodrigo Salas. Convolutional neural networks for detection intracranial hemorrhage in CT images. In Proceedings of the 5th Congress on Robotics and Neuroscience, number 2, pages 37–43, 2019. [SCOPUS].

•Daniela Montilla-Trochez, Rodrigo Salas, Alejandro Bertin, Inga Griskova-Bulanova, Paulo Lisboa, and Carolina Saavedra. Convolutional neural network for cognitive task prediction from EEG’s auditory steady state responses. In Proceedings of the 5th Congress on Robotics and Neuroscience, number 2, pages 44–50, 2019. [SCOPUS].

•D. Mellado, C. Saavedra, R. Torres, S. Chabert, and R. Salas. Self-improving generative artificial neural network with novelty detection for incremental class learning. Algorithms, In Press, 2019. [WOS].

•C. Saavedra, R. Salas, and L. Bougrain. Wavelet-based semblance methods to enhance single-trial ERP detection. Computational Intelligence and Neuroscience, 2019. [WOS].

Proyectos
•2025-2028. FONDECYT de iniciación 11250727. Embedding Time-Frequency Transformations in Deep Neural Networks for Enhancing EEG Pattern Identification.

•2024-2025. Investigadora Principal PI_LIR_24_14: Incorporación de transformaciones de tiempo-frecuencia en redes neuronales profundas para mejorar la identificación de patrones de EEG. Línea de Investigación Regular USM 2024.

•2019-202. Investigadora Principal FONDEF IDEA I+D ID19I10356. Sistema inteligente para la tele-rehabilitación de pacientes cardiovasculares.

•2017-2020. Investigadora Principal REDI-CONICYT proyecto N° 170367. New EEG Clustering Methods for Pre-clinical and Clinical Applications.

•2015-2018. Investigadora Principal ICHAA-CONICYT proyecto N° 79140057. Fortalecimiento del equipo multidisciplinario para desarrollar interfaces cerebro-computador para promover el envejecimiento activo.

Campus Casa Central Valparaíso

Av España 1680, Valparaíso.
+ 56 32 265 4242

Campus San Joaquín

Av. Vicuña Mackenna 3939, San Joaquín, Santiago.
+56 2 2303 7200